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Space, persistence and dynamics of measles epidemics

BENJAMIN BOLKER* anp BRYAN GRENFELL
Zoology Department, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK

SUMMARY

This paper explores the relations between persistence and dynamics in measles epidemics. Most current
models, including the stochastic seasonally forced and age-structured models examined here, fail to
capture simultaneously the observed dynamics and persistence characteristics of epidemics in large urban
populations before vaccination. Summary measures of persistence and trienniality allow us to compare
epidemics in England, New York and Copenhagen with results of non-spatial and spatial stochastic
models. Spatial (metapopulation) structure allows persistence and triennial dynamics to coexist in this
class of models. The spatial dynamics of measles, for which detailed spatiotemporal data are available,
may serve as a useful test of ideas applicable to other epidemiological and ecological systems with an

important spatial component.

1. INTRODUCTION

The recent spate of interest in nonlinear dynamics in
epidemiological and ecological systems has focused on
the dynamics of measles epidemics in developed
countries (Olsen & Schaffer 1990; Sugihara et al. 1990;
Rand & Wilson 1991; Drepper ¢t al. 1994). To a first
approximation, the biennial and triennial patterns of
recurring measles epidemics in these places are equi-
valent to those of a seasonally forced predator—prey
system (with susceptibles as prey and infective indi-
viduals as predators), driven by the annual aggregation
and consequent increase in infection rate of school
children.

Sustained multi-year oscillations point to the im-
portance of seasonality in measles dynamics — seasonal
forcing sustains otherwise damped oscillations generated
by simple measles models (Soper 1929; Fine &
Clarkson, 1982b; Olsen & Schaffer 1990) — but in-
troduction of seasonality into models brings up the
problem of persistence in measles dynamics. Measles
exists at the edge of extinction in human populations:
the disease spreads so quickly, and individuals recover
so quickly, that measles can only persist in communities
larger than a critical community size of about
250000-500000 individuals (Bartlett 1957, 1960a;
Black 1966) (figure 1).

Although Bartlett (1960 a) was able to obtain critical
community sizes in the observed range for England
and Wales in simple stochastic models without
seasonality, addition of seasonality to stochastic models
raises the critical community size necessary to allow
indefinite persistence of the disease in models to
unrealistic levels (Bolker 19934) (figure 1).

* Current address: Department of Ecology and Evolutionary
Biology, Guyot Hall, Princeton University, Princeton, New Jersey
08544-1003, U.S.A.

Phil. Trans. R. Soc. Lond. B (1995), 348, 309-320
Printed in Great Britain

These results are based on models assuming (incor-
rectly) completely homogeneous mixing among suscep-
tibles and infectives. In ecological systems, persistence
increases with the level of heterogeneity. Metapopu-
lation theory suggests that environmental heterogen-
eity —in particular, subdivision of the environment
into weakly coupled discrete patches —may increase
persistence under some circumstances (Huffaker 1958;
Pimental ¢f al. 1963 ; Hilborn 1975; Hassell et al. 1991;
Adler & Nuernberger 1994). Although metapopu-
lation theory has usually been applied to extinction of
single-species, predator-prey and host—parasitoid
systems, its results should apply equally to the special
case of host—disease systems. Real systems rarely
experience the homogeneous, mass-action mixing
assumed by standard epidemic models (but see
Anderson & May (1984) and May & Anderson
(1984)), and these differences could be critical to the
persistence and dynamics of epidemics.

Various forms of heterogeneity — age structure, gen-
etic, social, geographic and so forth (Anderson & May
1984, 19854, 1992; May & Anderson 1984) — have
attracted attention in the epidemiological literature,
but usually from the point of view of practical
epidemiological problems such as the efficacy of
vaccination programs. Where researchers have con-
sidered the effects of heterogeneity on dynamics, they
have largely been interested in the transient dynamics
following the onset of mass vaccination, but some
recent work (Schenzle 1984; Bolker 19934) has
considered the effects of heterogeneity on long-term
dynamics as well. Introducing age structure mitigates,
but does not appear to solve, the problem of persistence
(figure 1 and section 2¢).

Other work has explored the explicit effect of spatial
structure on measles dynamics (Murray & CIiff 1975;
ClLff & Haggett 1988; Olsen & Schaffer 1990;
Schwartz 1992). Since non-spatial structure alone does
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Figure 1. Empirical estimates of critical community size. Horizontal axis shows population size; vertical axis shows
‘fade-out proportion’, the fraction of months in each sample with no reported cases of measles. The vertical dotted
lines represent the empirical estimate of critical community size range (Bartlett 1957, 19604), 250000-500000. Data
from Black (1966) (a, islands) Bartlett (19604) (0, U.S. and Canadian cities), and Shaw (1990) (4, British cities;
data originally from OPCS (1948-68)). Although there are many possible sources of variation in the data, including
different reporting rates, per capita birth rates and levels of outside epidemiological contact, all the data fall roughly
along the same curve. Arrows show the estimated critical community size for the (homogeneous) SEIR model with
scaled immigration and the (age-structured) RAS model with constant immigration. Both of these models predict
critical community sizes much larger than the empirical estimate (see figure 2 and section 2).

not appear to address the question of persistence (figure
2), this paper focuses on the combination of age and
spatial structure, examining the relations between
dynamics and persistence characteristics of spatially
and age-structured stochastic models. In the process it
will combine aspects of both the dynamics-oriented
spatially structured models and the persistence-
oriented age-structured models. The goal is to find
models that are capable of replicating both the
dynamics of measles and its persistence characteristics
in large urban populations of developed countries.

The paper briefly reviews the observed dynamics of
measles epidemics and some of the basic models current
in the literature (section 2), discusses the possible
importance of immigration and spatial structure to
measles dynamics and examines how these factors have
been incorporated in previous modelling efforts
(section 3). It then briefly presents quantitative
summary statistics for dynamics and persistence that
allow more precise evaluation of models (section 4),
defines a class of spatial measles models (section 5) and
applies these statistics to the output of non-spatial and
spatial measles models, showing how incorporating
spatial structure in measles models can significantly
alter their dynamics.

2. OBSERVED DYNAMICS AND BASIC
MODELS
(a) Observed dynamics

As mentioned in the introduction, measles case
reports from cities in developed countries routinely
show annual (school-based) epidemics with multi-year
oscillations in epidemic size. These long-term oscil-
lations vary qualitatively from place to place and
during different historical periods, ranging from
regular, biennial epidemics (as seen for example in
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England and Wales between 1948 and 1968) to longer-
period, irregular, generally triennial epidemics (as
typified by the measles dynamics of Copenhagen
between 1928 and 1941). (Figure 24 shows a time series
from Copenhagen, demonstrating multi-year oscil-
lations and a switch in the mid-1940s from triennial to
annual and biennial patterns. New York City and
Baltimore show similar patterns.)

Investigations of time series of measles case reports
and of epidemiological models suggest that measles
epidemics, if not actually undergoing chaotic dy-
namics, are near the edge of the chaotic regime (Ellner
et al. 1993). The controversy over the existence of
actual chaos in measles case-reporting time series
continues (Sugihara & May 1990; Sugihara et al. 1990;
Rand & Wilson 1991 ; Nychka et al. 1992; Stone 1992;
Ellner et al. 1993 ; Tidd et al. 1993 ; Drepper et al. 1994
Grenfell et al. 1995). This paper will concentrate
instead on a more specific comparison of models and
data, the difference between biennial and triennial (or
longer-period) dynamics.

(b) SEIR model

The standard SEIR model (susceptible-exposed—
infective-recovered) for the dynamics of directly
transmitted disease has been exhaustively analysed in
the literature (Smith 1983; Aron & Schwartz 1984;
Schwartz 1985; Olsen et al. 1988; Olsen & Schaffer
1990; Rand & Wilson 1991; Kendall et al. 1993;
Drepper et al. 1994; Engbert & Drepper 1995). The
basic model is

dS/dt = u(N—S)—pSI/ N,
dE/dt = pSI/N— (pu+0) E,
di/dt = ok~ (u+v) I
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Figure 2. (a) Simulation estimates of critical community size. Axes as in figure 1 (note different scales). Persistence
data from figure 1 are shown with open circles (0). Also shown are simulation results from the sinusoidally forced
Monte Carlo SEIR model (parameters as in Olsen et al. (1988): = 0.02 year™, 8,/N =0.0010107 infective™
year™, 8, = 0.28, 0 = 35.84 year™, y = 100.0 year™*) with a constant immigration rate of 21 infectives per year (+);
Monte Carlo SEIR simulations with immigration proportional to population size (equal to (2.1 x 107%) N (Olsen et
al. 1988; Bartlett 1957)) (a); Monte Carlo RAS simulations with constant immigration rate of 21 infectives per year
(parameters as in Bolker & Grenfell (1993)) ( x ). (5) Monthly measles cases from Copenhagen, 1928-64 (corrected
for under-reporting, logarithmic scale). Insets show power spectra (smoothed with a three-point running mean) for
shorter periods indicated by horizontal bars; horizontal axes show frequency per year, vertical axes give normalized
power. The vertical line at 0.5 cycles per year shows the position of biennial cycles: peaks to the left of this line
represent lower-frequency, longer-period cycles. (i) Triennial dynamics, 1928-41. (ii) Biennial dynamics, 1952-64.
(¢) Monthly measles cases from a Monte Carlos RAS simulation (N = 108, other parameters as in (a)). Insets are
power spectra as in (4). (i) Triennial dynamics, 0-12. (ii) Biennial dynamics, 38-52. Note fade-outs in the triennial
domain (i).
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N=S+FE+I+R. (1)

In these equations g represents the per capita birth
and death rate, 1/o is the average latent period, and
1/v is the average infectious period. The key epi-
demiological parameter in the model is the contact
rate 3, the effective rate at which infective individuals
encounter and infect susceptible individuals. Addition
of an annual sinusoidal variation in the contact rate,
£ = po(l+ B, cos2nt), to mimic observed changes in
the contact rate caused by aggregation of children
in schools leads to the sinusoidally forced SEIR
model.

Phil. Trans. R. Soc. Lond. B (1995)

(¢) RAS model

A more realistic, age-structured (RAS) measles
model (Bolker 19934; Bolker & Grenfell 1993), first
proposed by Schenzle (1984), takes the basic epidemio-
logical structure of the SEIR model and adds age
structure and a more realistic seasonal pattern to it.
The age structure divides the population into four age
classes — pre-school children (0-6 years), primary
school children (6-10 years), adolescents (10-20 years)
and adults (20 years and older) —among which
epidemiological mixing takes place at different rates.
The basic structure of the model remains the same,
although each epidemiological category (S,E,I) is
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divided into annual cohorts, each of which falls into
one of the age classes. Newborns enter the first age
class; the per capita death rate is zero until age 20 and
a non-zero constant thereafter. Latency and recovery
are independent of age. Children move through the
age classes in one-year cohorts, which advance sud-
denly at the beginning of each school year to mimic the
school groupings of children. As discussed by Bolker
(1993 4), seasonally forced, age-structured SEIR-based
models can generally be described by an equation of
the form

dr/

o = DA, 0) ) Bulasa )T (). 2)
Here I(a) and S(a) are the numbers of infectives and
susceptibles in age class a; fy(a,a’) describes the
baseline mixing pattern between age classes a and
a’; fa(a,a’) describes the changes caused by seasonal
forcing; and f,,(¢), a function mapping the time of
year onto [0, 1], describes the pattern of seasonal
change. In this case the seasonal function f . is a
simple step function (0 during vacations and 1 during
the school year) and f,(a,a’) is non-zero only for
primary-school children. This structure allows higher
mixing rates within the primary school age class during
the school term than during vacations.

(d) Model behaviour : dynamics

The sinusoidally forced SEIR model exhibits an
extremely broad spectrum of dynamical behaviour
ranging from regular annual cycles to chaos (in this
case represented by two- to six-year quasi-cycles with
highly irregular phase and amplitude) (Aron &
Schwartz 1984 ; Olsen & Schaffer 1990), depending on
the amplitude of seasonal forcing. In addition, in most
of the chaotic regime the sinusoidal SEIR model
exhibits episodes of alternating biennial and triennial
behaviour (Kendall et al. 1993; Schaffer et al. 1993),
possibly matching those seen in the data.

The RAS model closely fits the observed biennial
pattern of measles epidemics in England and Wales
(Bolker & Grenfell 1993; Schenzle 1984) and also
predicts post-vaccination measles dynamics more ac-
curately than do homogeneous age-structured models
(Schenzle 1984); it is also much more dynamically
stable than the SEIR model. Over a wide range of
seasonal forcing amplitudes, where the SEIR model
produces irregular, chaotic dynamics with long (three-
to six-year) periods, the deterministic RAS model
always generates regular cycles and rarely produces
cycles longer than two years. The apparent mechanism
behind this behaviour is the buffering effect of children
in the pre-school age class, who experience a smaller
and more constant force infection than primary-school
children and thus provide a reservoir of susceptibles
(and infectives) to keep the system from experiencing
violent swings in measles incidence (Bolker 1993a;
Stone 1993). On the other hand, stochastic simulations
of the RAS model can generate the same kinds of
irregular and episodic dynamics seen in the data and in
the forced SEIR model (Bolker & Grenfell 1993) for
moderate-sized populations (figure 2¢).

Phil. Trans. R. Soc. Lond. B (1995)

(e) Model behaviour: persistence

Simple SEIR models with seasonal forcing fail
spectacularly in predicting the correct critical com-
munity size. In deterministic models the size of the
infective class routinely falls to 10™° of the total
population size, which suggests that the disease would
normally go extinct even in extremely large popu-
lations. Stochastic simulations reinforce this view: even
when allowance is made for a fairly large immigration
of infectives from outside the modelled population,
measles periodically goes extinct in model population
sizes of up to 50 million (see section 3 and figure 2).

Although the stochastic RAS model is less susceptible
than forced SEIR models to ‘fade-outs’ (periodic
extinctions) of disease, it still overestimates the critical
community size at ca. 1-2 million, even when a small
amount of outside immigration is allowed. Both the
forced SEIR and the RAS models fail to capture the
observed persistence behaviour of measles in real
communities, although the RAS model comes much
closer, missing the mark by a factor of two to four
rather than by two orders of magnitude (figure 24).

3. EFFECTS OF IMMIGRATION AND
SPATIAL STRUCTURE

Many factors affect measles persistence, both in the
real world and in models. Forced SEIR models in
particular tend to be structurally unstable, and so any
of a number of small changes in parameter values,
distributions of latent or infectious periods, super- or
sublinear terms in the infection rate, etc., could allow
some variant of either the SEIR or RAS models to
predict the empirically determined critical community
size.

A useful category of explanations involves the effect
of space and population structure on epidemic dy-
namics. Since finite persistence is the result of closed,
finite populations, any attempt to deal with persistence
leads immediately to questions about the definition
and demarcation of a population.

(a) Immigration

For example, a typical way of dealing with fade-outs
in measles models is to recognize that human com-
munities are not really closed systems. Researchers
have modelled open populations by adding a term for
the immigration of infectives into the system (Bartlett
19604 ; Griffiths 1973; Anderson & May 1986; Olsen
& Schaffer 1990; Rand & Wilson 1991) or, equi-
valently, assuming contact of susceptibles with a
constant pool of infectives outside the population
(Engbert & Drepper 1995).

This modification has been used in an ad foc manner
for some time (Olsen & Schaffer 1990; Rand & Wilson
1991), primarily because it gets around the practical
nuisance of having to re-start a simulation after every
fade-out. Researchers have usually overlooked the fact
that, even with a small level of immigration, forced
SEIR models experience frequent fade-out and still
fail to predict the empirical critical community size
(figure 2).
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Figure 3. Bifurcation diagram of the (deterministic) sinusoidally forced SEIR model with different amounts of
infective immigration. Model parameters as in figure 2. Horizontal axis shows outside epidemiological contact, as
measured by the number of infectives immigrating to the population (per capita per year, logarithmic scale) ; vertical
axis shows the Poincaré section of the fraction of infectives in the population (on a logarithmic scale), i.e. annual
samples of infectives at the beginning of each model year. Note the sensitivity of the cynamics to small changes in the
immigration parameter. Arrow indicates the immigration parameter used by Olsen et al. (1988), 21 infectives per year
in a population of 10%. Horizontal dashed lines show the cut-off value of one infective in the entire population for the
critical community size (CCS) range of N = 250000-500000. (See also the elegant paper by Engbert & Drepper

(1994) on this topic.)

A second, more serious problem is the extreme
sensitivity of forced SEIR dynamics to differing levels
of immigration (Engbert & Drepper 1994) (figure 3).

Given this sensitivity, the near impossibility of
determining the actual immigration level from em-
pirical data and the assumption (for example) that all
measles epidemics in the ‘outside world’ are out of
phase and thus generate a constant, non-seasonal flow
of infective immigrants become troublesome. The true
dependence of immigration rate on population size is
unknown; over some range immigration rates should
increase with population size, but in very large
populations immigration should saturate and perhaps
even decrease (as the population reaches natural
boundaries, for example the boundaries of an island or
continent). The extreme assumptions of constant
immigration rate and immigration rate proportional to
population size are both unrealistic, but constant
immigration rate gives a reasonable qualitative fit to
persistence data (figure 2) and is used hereafter.

(b) Explicit spatial structure

What about the dynamics of more explicitly spatial
models? While many spatial epidemic models have
focused on equilibrium properties (Anderson & May
1984; Sattenspiel & Dietz 1995), there has been a
notable tradition of exceptions covering a variety of
aims and degrees of realism. Bartlett (19604), and later
Grenfell (1992), studied the dynamics of simple nu-
merical models of cities subdivided into several parts or
into grids. In the 1970s and 1980s, Cliff and a variety
of collaborators worked on the study of measles as a
geographical diffusion process, culminating (from the
point of view of this paper) with a geographically
realistic (although non-seasonal, non-age-structured)
spatial Monte Carlo model of epidemics in Bristol and

Phil. Trans. R. Soc. Lond. B (1995)

the communities surrounding it (Murray & Cliff
1975). More recently, some researchers (Boccara &
Cheong 1992, 1993; Kleczkowski & Grenfell 1995)
have studied the effect of localized interactions on
epidemic dynamics using cellular automaton models.

Most relevantly for this paper, Schwartz (1992) has
explored a two-compartment spatial model that
generates chaos by weakly linking one small and one
large population, neither of which is independently
chaotic. Schwartz also considers the ability of long-
period dynamics to persist in finite populations.
Unfortunately, he uses only deterministic models,
assuming that epidemic cycles where a minimum of
1/N of the population is infective can survive in
populations of size > N. In stochastic models, demo-
graphic stochasticity will probably become important
when infective numbers become small, allowing fade-
out even in models whose deterministic counterparts
never have I < 1/N. Nevertheless, Schwartz’s con-
clusion that spatial structure may drive the observed
dynamics of measles epidemics is important.

There is a qualitative difference between the
dynamic effects of spatial structure (or other equivalent
forms of heterogeneity such as social or school
structure) and simpler factors such as immigration. At
the crudest level, the effect of adding immigration or
making other changes to ensure persistence in non-
spatial models is to stabilize the dynamics, filling in the
troughs of an epidemic and suppressing chaos by
damping the ‘boom-and-bust’ cycle (Berryman &
Millstein 1989). Ensuring persistence tends to make
chaos and long-period, usually triennial, cycles less
likely; this negative correlation between persistence
and triennial dynamics applies to a wide range of non-
spatial compartmental measles models (see, for
example: Bolker 19934; Stone 1993). Although many
non-spatial models may be fixed to give the correct
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critical community size by adjusting immigration or
other parameters, it can only be at the expense of
triennial or longer-period cycles. The rest of this paper
considers when and how spatial models of measles
epidemics can simultaneously capture the long-period
epidemics and the persistence criteria observed in the
real world.

4. QUANTIFYING PERSISTENCE AND
DYNAMICS

The previous section claimed that triennial dynamics
and persistence cannot coexist in non-spatial measles
models. Do they coexist in the real world? Cities such
as Copenhagen, New York and Baltimore do not
experience fade-out in the twenty- to forty-year time
spans observed, and appear to have triennial dynamics
at times; this section will develop more quantitative
measures of persistence and periodicity to show that
non-spatial compartmental measles models really fail
to reproduce observed epidemic patterns.

(a) Summary statistics for persistence and
dynamics

The fade-out proportion, the proportion of months in a
data series or in a simulation with no reported cases of
measles, quantifies persistence well. (Other statistics,
such as the number of fade-out periods of a given
length or number of years without a fade-out,
characterize slightly different aspects of persistence
patterns; most of the statistics give similar results

5x1072 1

0.5%1073 -

except in extreme cases.) Sometimes, long simulations
will have a non-zero but very small fade-out pro-
portion. If the fade-out proportion for a particular
simulation run represents less than one month of fade-
out in the entire forty-year time span reported for
Copenhagen (the longest available data series), it is
below the resolution limit and can be considered
consistent with the observed data sets that show
persistence.

Standard spectral analysis techniques (Chatfield
1975) reveal the relative importance of two- and three-
year epidemic cycles in a given simulation or data
series. The area underneath particular peaks in the
(smoothed) power spectrum of measles case reporting
data gives a measure of the biennial or triennial nature
of the epidemics.

The most useful summary statistic is the power ratio,
defined as the ratio of the triennial power (area under
the triennial part of the power spectrum, around a
frequency of 0.33 year™) to the biennial power (area
under the biennial part of the power spectrum, around
a frequency of 0.5 year™) (figure 4). The power ratio
is a single number that quantifies the patterns of
interest (in this particular case) in the power spectrum.

(b) Comparing real and simulated epidemics

The fade-out proportion and power ratio can be
used to compare a variety of real and simulated
epidemics, confirming the problem: while measles
persistence and irregularity (triennial epidemics) ap-

(]

normalized power (log scale)

5x1073

0.1 %1073

0.0 0.33 0.66

T 1

1.00 1.50 2.00

frequency / year™!

Figure 4. Power spectra and power bands for the data sets from (a) England and Wales (1948-66) (p.r. 0.089) and
(b) Copenhagen (1928-64) (p.r. 1.27). Figures show the power spectra of the data, Fourier transformed and smoothed
with a three-point running mean. Light shading indicates the power associated with triennial epidemics, with
frequency ranges 0.253-0.413 year™ and 0.583-0.743 year™*; dark shading indicates the power associated with
biennial epidemics, with frequency range 0.413-0.583 year™.
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Figure 5. Plots of power ratio, fade-out proportion and population size for the Monte Carlo RAS model (®) and
measles data from England and Wales, New York, Copenhagen and Baltimore (a). () Fade-out proportion (vertical
axis) versus population size (horizontal axis, logarithmic scale). (b) Log (power ratio) versus population size. (¢)
Log (power ratio) versus fade-out proportion. Note particularly the upper two triangular points at a fade-out
proportion of zero, above all power ratios recorded for simulations where measles persisted.

pear compatible in some of the data, they cannot be
reproduced together by simulations.

As mentioned above (section 2d), one of the
characteristics of seasonally forced epidemic models is
their ability to switch episodically between quali-
tatively different types of dynamics (figure 2) (Schaffer
etal. 1993). Although this behaviour is fascinating from
a theoretical point of view, perhaps representing an
instance of intermittency (Grebogi et al. 1983 ; Schaffer
et al. 1993), and perhaps reflected in the shifts in
measles dynamics in Copenhagen and New York in the
1940s and 1950s, it becomes a nuisance when trying to
compare simulations with data. Because of the way
that the fade-out proportions and power ratios average
among different episodes, a century of simulation
output containing an 80-year episode of biennial
dynamics and zero fade-out and a twenty-year episode
of triennial dynamics and high fade-out could appear,
when aggregated, to be a century of triennial dynamics
with negligibly low fade-out. To avoid this problem, all
simulation results have had fade-out proportions and
power ratios calculated for each twenty-year block
separately. Similarly, the data sets for Copenhagen,
New York and Baltimore are broken up into several
separate periods that display uniform dynamics
(Copenhagen 192841 (triennial), 1941-52 (annual),

Phil. Trans. R. Soc. Lond. B (1995)

1952-64 (biennial); New York 1928-45 (triennial),
1945-64 (biennial); Baltimore 1928-53 (triennial),
1953-64 (biennial)).

Figure 5 shows the trends of power ratio and fade-
out proportion with increasing population size in the
Monte Carlo RAS model and the correlation between
the two summary statistics. As population size
increases, increasing the number of infectives present
during troughs and thereby decreasing demographic
stochasticity, the fade-out proportion and power ratio
simultaneously decrease. The overall trend is from
triennial epidemics with fade-outs in the troughs (high
power ratio, high fade-out proportion) to biennial
epidemics where measles persists during the troughs
(low power ratio, zero fade-out proportion). Figure 5¢
shows the statistics for some of the available measles
data sets as well as for the RAS model, indicating in
particular that there are cities with persistent measles
(zero fade-out) where the power ratio achieves levels
higher than in any of the simulations with persistent
measles.

Figure 6 summarizes the significant pattern of figure
5, showing histograms of data sets and simulations with
zero fade-out or with fade-out less than the resolution
limit (see above, section 4). The histogram includes
simulation output from RAS model runs with popu-
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Figure 6. Histogram of power ratios for approximate twenty-year periods of (¢) simulation (n = 71) and (4) data
(n = 13) with zero fade-out or with fade-out less than the resolution limit (see text). Simulation runs include varying
population sizes from 10* to 5 % 107; real data include case reports from Copenhagen, New York, English cities and
London boroughs. The data distribution has a tail with power ratio greater than 1.0 that is not matched by the

simulations.

lations of 5000050 million; similar results are obtained
by changing seasonality or infective immigration rates
in the RAS model. While most of the persistent
simulations have power ratios less than 0.5, several of
the real data sets have power ratios ranging from 0.5 to
2.0. Real cities, but not the model cities presented here
(which are the most realistic extant models in this
respect), can sustain triennial epidemics without fade-
out.

5. SPATIAL MODELS
(a) Model structure

The simplest way to make a spatial analogue of the
Monte Carlo RAS model is to impose a patch or
metapopulation structure on top of the existing epidemio-
logical and age-structured compartments. Metapopu-
lation models take the age cohorts in the RAS model
and subdivide them further into cohorts in different
spatial regions, representing different cities or different
boroughs or suburbs within the same metropolis. There
is no explicit movement between cities, but individuals
in each region have epidemiological contact with
individuals in every other region.

The extension of the basic SEIR/RAS framework to
multiple patches is straightforward. The basic ex-
pression for the infection rate of susceptibles of age @ in
city ¢ is 2,2, fB,,(a, ', ) S;(a) L(a’) ; most of the struc-
ture of a particular model lies in the definition of the f
(contact) matrix. here it is defined as

ﬁii(a’ a,t) = ¢z‘j(a> a,t) fola, d,t), (3)

Phil. Trans. R. Soc. Lond. B (1995)

where g, is the contact rate as defined in the RAS
model. The contact rate between a susceptible of age a
in city 7 and an infective of age 4’ in city j at time ¢
equals a multiplicative coupling factor ¢ times the
effective contact rate if the two were in the same
location.

Clearly, a great deal of complicated structure about
the movements of children and adults at different times
of year can be built into this equation (Sattenspiel &
Dietz 1995). All of the results presented here will deal
with a simple homogeneous-coupling case where a
single coupling ¢ applies between all cities in the
system, regardless of age or season (¢, = (i #)),
¢, = 1). Intuitively, ¢ is the ratio of between- and
within-city contacts; if ¢ = 0.01, the probability of
contact with a foreigner is 19, of the probability of
local contact. (In addition, all contact rates are divided
by 1/(1 +n¢), where nis the number of patches, so that
the total effective contact rate remains constant with
increasing numbers of patches; ¢ = | implies homo-
geneous mixing.) All patches have identical demo-
graphic and epidemiological parameters, which is
unrealistic but parsimonious.

These simplest possible spatial models are used in
part because of the difficulty of parameterizing even
simple subdivided measles models from data. There is
no accepted way of quantifying epidemiological
couplings between different regions. Earlier work on
spatial measles models has used either a range of
coupling parameters (Bartlett 1960a; Grenfell 1992),
parameters estimated by trial and error from simu-
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Figure 7. Triennial dynamics sampled from (a) Copenhagen (solid line) and Baltimore (dashed line) data sets

(corrected for under-reporting), () a spatial model (N =

106, n = 10, ¢ =

07%), (¢) a non-spatial model (N = 10°).

Horizontal axis shows date or time in years; vertical axis shows total cases reported per month (approximated from
infective time series in (4)) on a logarithmic scale. In (4), the thick upper line shows the total number of reported cases
from the entire population and the thin lines show the cases from the ten subpopulations; note that the epidemics are
poorly correlated among the subpopulations and that the total population is rescued from fade-out by one or two
subpopulations on several occasions. In (a), min = 7, max = 17730 (Copenhagen), and min = 4, max = 24052
(Baltimore); in (), min = 6, max = 5816; (¢) min = 0, max = 18299.

lations (Murray & Cliff 1975) or parameters chosen by
intuition (Schwartz 1992). Although recent work by
Sattenspiel & Dietz (1995) has suggested some ways of
quantifying epidemiological coupling by measuring
human mobility patterns, their methods require
specific data that is not easily available for any areas
with persistent measles epidemics. Estimates based on
their work (Bolker 19936) suggest that 107*-107" is a
plausible range for epidemiological couplings. This
encompasses the range of couplings used in simulations
cited above and so is not useful for distinguishing
among them, but it at least makes the link between a
range of mobility patterns (frequency and length of
visits between cities) and a range of epidemiological
coupling constants.

Another possible method for estimating coupling
relies on back-estimation from the observed case
reports, analogous to the Fine & Clarkson (1982a)
estimates of seasonal variation in contact rates or the

Phil. Trans. R. Soc. Lond. B (1995)

Anderson & May (19855) estimates of age-structured
mixing rates. If we assume homogeneous mixing within
every compartment and specify some simplified contact
structure (such as the single between-city contact rate
used above), and if we can estimate the number of
susceptible individuals in each population, contact
rates may be found simply by solving a linear equation.
Susceptible population sizes can be estimated by
accounting for births, deaths and infections (ClLff &
Haggett 1988; Fine & Clarkson 1982a; Grenfell et al.
1993, 1995), and so this method can work in theory,
but preliminary attempts along these lines have run
into problems with the strong correlation between
cities (which reduces the amount of available in-
formation on cross-coupling).

More statistically sophisticated methods may work:
time-series methods such as the Kalman filter
(Kalivianakis et al. 1994; Cliff & Haggett 1988) are a
more rigorous approach to time-varying coupling
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constants. Finally, in the rare cases where highly
detailed case reports are available (Becker & Wang
1993), maximum likelihood estimation can determine
all of the relevant contact rates. However, data of this
quality are extremely unusual.

The simulations reported here use a population of
10%, in the critical community size range for the RAS
model, broken up into z = 5, 10 or 15 equal partitions,
with coupling ¢ of 107 to 107'. This range of
parameters should give preliminary evidence about the
ability of spatial models to overcome some of the
discrepancies between persistence and dynamics
observed in the SEIR and RAS models.

(b) Results of spatial simulations

The simulations show that spatial structure can
enhance persistence, and that it can generate new
kinds of dynamic behaviour. Figure 7 shows samples of
triennial dynamics (numbers of cases reported monthly
over time) from the Copenhagen data set, from a non-
spatial model (N = 10%) and from a spatial model
(N =10%n=10,¢ = 107®). Both the spatial and non-
spatial models generate three-year cycles, but measles
fades out (and is reintroduced by infective immi-
gration) in the epidemic troughs of the non-spatial
model, while it remains persistent in Copenhagen and
in the spatial model. The correlations between epi-
demics in the subpopulations are fairly weak in the
example from the spatial model, but remain strong
enough (because of similar epidemic dynamics driven
by similar school calendars) to preserve a three-year
cycle in total case numbers. At other periods in the
same spatial simulation when the subpopulations are
more highly correlated, the dynamics resemble those of
the non-spatial model, with sharper epidemics and
more fade-outs.

Neither the non-spatial nor the spatial model is a
perfect match for the dynamics observed in
Copenhagen and Baltimore. The epidemic troughs of
the spatial model approximate the troughs of the data,
but the non-spatial model does a better job matching
the epidemic peaks of the data, and the real epidemics
have even larger maxima than in the non-spatial
model. In addition, the relatively poor correlations
between the subpopulations (Pearson’s r applied to
log (14 cases) = 0.33), which allow the persistence of
measles, are somewhat lower than the correlations
between either the largest cities in England and Wales
(r=0.59 for the period 1948-66) or the boroughs
within the city of London (r = 0.69 for 1950-59). The
actual social and spatial structure that can allow urban
populations to have such large epidemic peaks, be
internally coherent and still maintain chains of
infection in the troughs remains a puzzle. Nevertheless,
as shown in figure 8, the spatial model does address the
most striking qualitative problem of the non-spatial
models, the negative correlation between persistence
and triennial/irregular dynamics.

The model dynamics shown in figure 7 are only one
example of simulated dynamics. To match the fre-
quency of occurrence of persistent, triennial dynamics
in spatial and non-spatial simulations against the data,
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Figure 8. Histogram of results from data, non-spatial and
spatial models, all with zero or negligible fade-out. (a, 5) As
in figure 6 ((a) all data, » = 13; (b) non-spatial simulations,
n=71). (¢) Power ratios from twenty-year blocks with fade-
out proportion less than the resolution limit from spatial
simulations with N =5, 10, 15 and ¢ = 107*-10"". The
spatial models capture (and indeed exaggerate) the long
power-ratio tail observed in the data.

figure 8 shows a histogram of the power ratios of all
data sets and non-spatial and spatial simulations with
zero or negligible fade-out (cf. figure 6). Unlike the
power ratios for the non-spatial simulations, the
distribution of power ratios for the spatial simulations
has a triennial tail similar to that of the distribution for
the real data sets. In contrast to other ways of
modifying the model to enhance persistence (section
3), spatial structure does not suppress three-year
dynamics.

6. DISCUSSION AND CONCLUSIONS

Figure 8 represents a proof of plausibility; spatial
structure can, under the right conditions, generate
dynamics that simultaneously match the persistence
and trienniality of some real data sets. As pointed out
above, the correspondence between the spatially
structured model and the real dynamics is not perfect;
Copenhagen and Baltimore achieve epidemic peaks
even higher than those of the non-spatial models, but
have troughs similar to those of the spatially structured
models.

The exact mechanism allowing spatially structured
models to persist during triennial episodes is not clear.
Examination of fade-out timing in different patches
simply shows differences in phase among the patches
that prevent all patches from going extinct simul-
taneously. Coupling is known to stabilize patch models
(Hastings 1993), but there is no apparent reason why
adding heterogeneity through a spatial stabilizing
mechanism should differ from the various other
mechanisms mentioned in section 3 in allowing
triennial epidemics.

Some of the arguments for a spatial mechanism for
measles persistence have pointed out that certain kinds
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of spatial or social heterogeneity could help to maintain
measles; for example, different schools or segments of
the population could be affected by epidemics in
different years, or there could be special isolated pools
of susceptibles (e.g. in immigrant communities) who
might be in particularly close contact with immigrating
infectives.  Similarly, microspatial structure — the
detailed patterns of contact between children of
different ages in interconnected families, neighbour-
hoods and school districts — may turn out to be more
relevant than the broad spatial compartments used in
our models. Heterogeneity at a small spatial scale
would also allow apparent correlation at the scale of
boroughs within a city or cities within a country while
maintaining enough incoherence to preserve the
persistence of measles. The simulations performed here
give no information about the reality of any of these
scenarios — only detailed data on the social and spatial
distribution of cases during a real measles epidemic
could do that. They do suggest that no such hetero-
geneities are necessary for a qualitative match between
the persistence and dynamic properties of models and
data, although extra structure might eliminate some of
the remaining discrepancies between the data and the
models.

The metapopulation models discussed here reduce
the n® possible between-city contact parameters to one
generic coupling parameter. It would be useful to be
able to test a much wider class of models. In addition
to heterogeneity in couplings between cities, there
could be heterogeneity among cities in population size
and effective density. Finally, there is no reason for
spatial coupling to be constant by age and season; for
example, children would probably have a lower cross-
contact rate during the school term, but possibly a
higher one during vacations. Preliminary results from
models with heterogeneous spatial coupling and with
age- and seasonally structured cross-couplings, suggest
that there are not major qualitative differences between
the simple metapopulation models considered here and
more complex models.

Further research in this direction, however, is limited
by computational and analytic ability. As the number
of parameters and possible model structures increases
combinatorially, it becomes more pressing to find new
ways to estimate parameters for the models directly
from the data. In addition, we need robust dynamically
significant summaries of model behaviour that can be
observed and tested against many aspects of the
available data. The complex intermittent dynamics of
seasonally driven measles models make many standard
model validation tools inappropriate (Adkison 1992),
but summaries such as fade-out proportion, power
ratio, peak and trough incidence levels, internal
correlation and fractions of cases in different age classes
should help produce models that match the data in
important ways. An extensive set of spatially and
age-structured data on measles epidemics does exist
(OPCS 1948-68), which may be suitable for refining
the simple spatial models presented here.

As a final point, we note the rich episodic structure
found in both models and case reporting data (figure
2b,¢). These episodes have been linked to inter-
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mittency in models (Kendall et al. 1993 ; Schaffer et al.
1993) and to demographic shifts in the real world
(Grenfell ¢t al. 1993). Episodic dynamics may present
an obstacle, generating non-stationary patterns and
making it difficult to interpret the underlying causes of
dynamic changes; alternatively, we can interpret them
as an opportunity, allowing the possibility of linking
another supposed dynamic curiosity with a real
epidemiological system.

Persistence and epidemic cycles have traditionally
been studied as separate aspects of epidemiology. This
study shows that, at least for measles epidemics,
persistence and cyclic dynamics are tightly linked. The
probability of fade-out depends inevitably on the
pattern of recurrent epidemics, and vice versa. In
addition, models show that spatial structure has the
potential to alter persistence and the association
between persistence and dynamics significantly. How-
ever, to prove the importance of spatial structure, and to
match the spatial dynamics of the models with data,
there will be no substitute for more careful analysis of
spatially structured measles data.

This research was partly completed with the support of the
Paul Mellon Fellowship (B.B.) and the Isaac Newton
Institute for Mathematical Sciences. We thank Jonathan
Dushoff for a number of useful suggestions.
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